Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
نویسندگان
چکیده
1. The xylem pressure inducing 50% loss of hydraulic conductivity due to embolism (P50) is widely used for comparisons of xylem vulnerability among species and across aridity gradients. However, despite its utility as an index of resistance to catastrophic xylem failure under extreme drought, P50 may have no special physiological relevance in the context of stomatal regulation of daily minimum xylem pressure and avoidance of hydraulic failure under non-extreme conditions. Moreover, few studies of hydraulic architecture have accounted for the buffering influence of tissue hydraulic capacitance on daily fluctuations in xylem pressure in intact plants. 2. We used data from 104 coniferous and angiosperm species representing a range of woody growth forms and habitat types to evaluate trends in three alternative xylem hydraulic safety margins based on features of their stem xylem vulnerability curves and regulation of daily minimum stem water potential (Wstem min) under non-extreme conditions: (i) Wstem min ) P50, (ii) Wstem min ) Pe, the difference between Wstem min and the threshold xylem pressure at which loss of conductivity begins to increase rapidly (Pe) and (iii) Pe ) P50, an estimate of the steepness of the vulnerability curve between Pe and P50. Additionally, we assessed relationships between xylem capacitance, species-specific set-points for daily minimum stem water potential and hydraulic safety margins in a subset of species for which relevant data were available. 3. The three types of hydraulic safety margin defined increased with decreasing species-specific set-points for Wstem min, suggesting a diminishing role of stem capacitance in slowing fluctuations in xylem pressure as Wstem min became more negative. The trends in hydraulic safety were similar among coniferous and angiosperm species native to diverse habitat types. 4. Our results suggest that here is a continuum of relative reliance on different mechanisms that confer hydraulic safety under dynamic conditions. Species with low capacitance and denser wood experience greater daily maximum xylem tension and appear to rely primarily on xylem structural features to avoid embolism, whereas in species with high capacitance and low wood density avoidance of embolism appears to be achieved primarily via reliance on transient release of stored water to constrain transpiration-induced fluctuations in xylem tension.
منابع مشابه
Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?
Angiosperm and coniferous tree species utilize a continuum of hydraulic strategies. Hydraulic safety margins (defined as differences between naturally occurring xylem pressures and pressures that would cause hydraulic dysfunction, or differences between pressures resulting in loss of hydraulic function in adjacent organs (e.g., stems vs. leaves) tend to be much greater in conifers than angiospe...
متن کاملXylem recovery from drought-induced embolism: where is the hydraulic point of no return?
For terrestrial plants, maintenance of the integrity of the rootto-leaf water transport pathway is essential for sustaining photosynthetic 9as exchange and growth. The problem of maintaining long-distance water transport is especially challengin9 in trees because path-length resistances and gravity can result in steep gradients of increasing xylem tension from roots to terminal branches, potent...
متن کاملPlant resistance to drought depends on timely stomatal closure.
Stomata play a significant role in the Earth's water and carbon cycles, by regulating gaseous exchanges between the plant and the atmosphere. Under drought conditions, stomatal control of transpiration has long been thought to be closely coordinated with the decrease in hydraulic capacity (hydraulic failure due to xylem embolism). We tested this hypothesis by coupling a meta-analysis of functio...
متن کاملIntraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana.
An adequate general drought tolerance and the ability to acclimate to changing hydraulic conditions are important features for long-lived woody plants. In this study, we compared hydraulic safety (water potential at 50% loss of conductivity, Psi(50)), hydraulic efficiency (specific conductivity, k(s)), xylem anatomy (mean tracheid diameter, d(mean), mean hydraulic diameter, d(h), conduit wall t...
متن کاملDo woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? : answers from a model.
We discuss the relationship between the dynamically changing tension gradients required to move water rapidly through the xylem conduits of plants and the proportion of conduits lost through embolism as a result of water tension. We consider the implications of this relationship to the water relations of trees. We have compiled quantitative data on the water relations, hydraulic architecture an...
متن کامل